
SNUG 2019 1

Shift-Left: Complementing Simulation with VC

Formal™

Srinivasan Venkataramanan,

L B Om Prakash, Balamurali N S, Mohammed Asad Rizvi

Infinera India

June 26-27, 2019

SNUG India – Bangalore

SNUG 2019 2

Agenda

Introduction

Design Structures

Deploying VC Formal

Results

Conclusion

SNUG 2019 3

Introduction

• Formal Verification:

– Now mainstream

– Augments Simulation based techniques very well

– On select-tasks, provides shift-left in the timelines

• Infinera:

– Vision: “Enable an Infinite Network that can provide unlimited services to everyone,
everywhere, instantly.”

– Designs some of the world’s most complex optical networking chips

– Complex IPs, aggregated to sub-chip, full-chip, board, Software etc.

– Design & Verification of IPs, sub-chip

• Team has been using VCS + UVM for many years

– With custom Base Class Library underpinning standard UVM

– Deployed VC Formal on a recent chip, with selected design structures as targets

SNUG 2019 4

Design Structures chosen for Formal

• Success of Formal – depends on sort of blocks/problems chosen

– Unlike Simulation that’s well-understood

• Following design structures chosen in our project:

– Debug Structures in IPs

– Mesh structures for re-ordering

– PathDelays at sub-system

• Formal “apps” are a great starting point:

– Quick and easy to start deploying

– Does not require “Formal specialists”

– Proven to deliver results across design styles

– Leads to FPV (Formal Property Verification)

• Also using:

– Coverage Unreachability (FCA)

– FPV – Formal Property Verification

SNUG 2019 5

Debug Structures in IPs

• IPs get reused across generations of chips

• Recently added debug feature

– Tracking health parameters

– Intent - ease the process of debugging post-silicon

• Added during later stage of Design process

– Each IP is verified rigorously using UVM + Coverage

metrics

– Closure of functional verification was at its final stage

– Big impact to include DebugBus verification in UVM flow

SNUG 2019 6

Mesh structures for lane re-ordering

• Commonly referred as Crossbar (Xbar)

• Help in routing the data in switch fabrics

Output Buffer

Input Buffer

1 2 3 4 5

1

2

3

4

5

SNUG 2019 7

PathDelays at sub-system

• All control signals should arrive at same time

• System performance reduction due to packet drops

SNUG 2019 8

VC Formal Flow

• Two phases :

– Compile, analyze and build the model

– Run checks on the built-model

SNUG 2019 9

VC Formal - CC app

• Connectivity Checking (CC) app

– Checks that logical & structural connection exists between source and destination

COREA

COREB

CNTRL

r

IN1 IN2

OUT1

OU

T2

IN1

IN2

OUT1

OUT2

IN1

IN2

OUT1

OUT2

0

1

0

1

Pi1

Pi2

Pi3

Pi4

Pi5 Pi6

Po1

Po2

Po3

TOP

SNUG 2019 10

• Used VC Formal CC app
• Python based custom flow automationDebugBus

• Translated “mesh” to “Iterative
Connectivity problem”

• Used VC Formal CC app

Lane Re-
ordering

• XML based specification → SVA
• Use VC Formal FPVPathDelays

Deploying VC Formal on our Design

Structures

SNUG 2019 11

Types of Connections

SNUG 2019 12

Verifying connectivity

• Connections - regular structures

• 3 key elements needed:

– Stimulus (Src, Enable, Clk, Reset)

– Checkers – a_cc_chk_0 : assert property (en_0 == 0 |-> ##LAT dst_0 == $past(src_0, LAT));

– Coverage – ensure all combinations are verified

Assertions

Covera

ge

SNUG 2019 13

Verifying connectivity – simulation

• Add assertions

• Devise quality patterns:
– Walking one-s, zero-s etc.

– Every bit toggle

– Reverse of the default values

– Negate all “un-selected paths”
etc.

• Add FCOV to ensure all
intended patterns are run

• Formal – specify what you

need to “check”

– Leave the rest to the engines

SNUG 2019 14

• Building a Formal Model requires basic design information

• We developed a CFG file to capture this

• Build Phase Requirements
– Clocks

– Resets

– Derived clocks

– Derived resets

– Any black-boxes

Custom flow around VC Formal

[DebugBus]

Name: RX_IP

sink_sig: rx_ip.dbg_mux_out

sel_sig: rx_ip.sel_sig

clk_sig: rx_ip.clk

rst_sig: rx_ip.rst_n_i

rst_level:LOW

latency: 2

SNUG 2019 15

• Without proper FF identified, Formal runs will not be fruitful

• VC Formal has a mechanism to “check the FV setup” (check_fv_setup)

• Indicates potential missing clocks, resets etc.

Importance of clocks and resets in FV

check_fv_setup

- output

SNUG 2019 16

• CFG file capturing DebugBus Requirement

• Connectivity information:

– Source

– Sink

– Latency (Optional)

– Enable value (Optional)

Connectivity specification - abstracted

[MuxedConnections]

sel_sig: rx_ip.dbg_sel_sig

select signal value

[0]
sink_slice: 31:2

src_sig: rx_ip.src_0

selectsignal value

[1]
sink_slice: 0

src_sig: rx_ip.src_1_0

sink_slice: 1
src_sig: rx_ip.src_1_1

SNUG 2019 17

Specifying pipelined connection

with Multiplexed path

[MuxedPipelined Connections]

sel_sig: rx_ip.dbg_sel_sig

select signal value

[0]
sink_slice: 31:1

src_sig: rx_ip.src_0

latency: 3
select signal value

[1]
sink_slice: 0

src_sig: rx_ip.src_1_0

latency: 4

Flip
Flop1

D Q
Flip

Flop2

D Q
Flip

Flop3

D Q

Flip
Flop1

D Q
Flip

Flop2

D Q
Flip

Flop3

D Q
Flip

Flop4

D Q

SRC0

SRC1

DEST

Select
Multiplexed Pipelined connection

a_cc_chk_0 : assert property (##3 rx_ip.dbg_sel_sig == 0 |->

rx_ip.dbg_mux_out[31:1] == $past(rx_ip.src_0, 3));

a_cc_chk_1 : assert property (##4 rx_ip.dbg_sel_sig[0] == 1 |->
rx_ip.dbg_mux_out[0] == $past(rx_ip.src_1_0, 4));

Equiv. SVA

(add_cc

command in VC

Formal)

SNUG 2019 18

• Used VC Formal CC app
• Python based custom flow automationDebugBus

• Translated “mesh” to “Iterative
Connectivity problem”

• Used VC Formal CC app

Lane Re-
ordering

• XML based specification → SVA
• Use VC Formal FPVPathDelays

Deploying VC Formal on our Design

Structures

SNUG 2019 19

Lane re-ordering verification

• Classical crossbar

– Routes traffic from input to output as per config

• Verifying each combination is critical for

closure

• Each “lane config” consumes 180 minutes of

simulation time

– 16 lanes → 256 (16*16) various configurations to be

tested

– 256 * 180 == 46080 minutes → 768 hours → 32

days!

– Also requires smart test + coverage model

SNUG 2019 20

Using VC Formal for Lane re-ordering

• Having verified one lane in simulation – we translated

this problem into “iterative connectivity verification”

– Do not write 256 “properties” and make mistakes!

IterativeConnectivity

Name: Lane_reorder

loop_var: itr_var

loop_start: 0

loop_end: 15

xbar: true

sel_sig: ip_lane_<itr_var>_cfg

src_sig: ip_lane_<itr_var>_inp

sink_sig: ip_lane_<itr_var>_out

xbar_chk_sel_0_out_0: assert property (

##1 ip_lane_0_cfg[3:0] == 0 |->

ip_lane_0_out[79:0] == $past(ip_lane_0_inp[79:0] , 1));

xbar_chk_sel_1_out_0: assert property (
##1 ip_lane_0_cfg[3:0] == 1 |->

ip_lane_0_out[79:0] == $past(ip_lane_1_inp[79:0] , 1));

Equiv. SVA (add_cc

command in VC

Formal)

SNUG 2019 21

• Used VC Formal CC app
• Python based custom flow automationDebugBus

• Translated “mesh” to “Iterative
Connectivity problem”

• Used VC Formal CC app

Lane Re-
ordering

• XML based specification → SVA
• Use VC Formal FPVPathDelays

Deploying VC Formal on our Design

Structures

SNUG 2019 22

Verifying PathDelays at subsystem

• Each IP verified

independently

• Sub-chip sims are very long

• Not all scenarios from IP to

sub-chip are ported/re-run

SNUG 2019 23

Using VC Formal for PathDelays

property p_const_path_del (src_sig, sink_sig, LATENCY);

##LATENCY $changed(src_sig) |=> ## (LATENCY - 1) $changed(sink_sig);

endproperty : p_const_path_del

a_data_del : assert property (p_const_path_del(

.src_sig(ip1_inst.w2),

.sink_sig(common_blk_inst.in2),

.LATENCY(2)));

a_dv_del : assert property (p_const_path_del(

.src_sig(ip1_inst.w3),

.sink_sig(common_blk_inst.in3),

.LATENCY(2)));

• Ask VC Formal to “disprove” the above

assertions

• Measure one path latency in simulation

• Feed it to SVA model and run Formal

• System architects get involved in these

requirements – hard for them to code SVA

SNUG 2019 24

Using XML for PathDelay specification

property p_const_path_del (src_sig, sink_sig, LATENCY);

##LATENCY $changed(src_sig) |=> ## (LATENCY - 1)

$changed(sink_sig);
endproperty : p_const_path_del

a_data_del : assert property (p_const_path_del(

.src_sig(ip1_inst.w2),

.sink_sig(common_blk_inst.in2),

.LATENCY(2)));

a_dv_del : assert property (p_const_path_del(

.src_sig(ip1_inst.w3),

.sink_sig(common_blk_inst.in3),

.LATENCY(2)));

• XML is a popular format

• System architects familiar with XML

• We developed a flow to extract SVA +

VC Formal setup from XML

• Several black-boxes setup to handle

huge design

TCL

(VC Formal)

SNUG 2019 25

Results

Quality, Completeness & Shift-left

SNUG 2019 26

Name Number Of Assertions Constraints

IP1 16 13

IP2 29 10

IP3 539 7

IP4 131 9

IP5 2 5

IP6 1 30

IP7 36 4

IP8 358 12

IP9 21 42

IP10 36 27

IP11 48 563

IP12 51 316

IP13 52 37

IP14 35 5

Using CC app

DebugBus verification

SNUG 2019 27

Lane re-ordering verification results

Lane re-ordering typical simulation time

Number of lanes Typical simulation time per-lane
(minutes)

Total simulation time (Extrapolated in
minutes)

256 180 46080

Lane reordering VC Formal build and run time

Number of assertions Build time Total VC Formal run time (in minutes)

256 5 10

SNUG 2019 28

• Given a set of connections, tool ran and

produced few violations

• VC Formal generates FSDB for:

– Debugging failures (Falsifications)

– Witness generation

– Reset trace

Sample falsification – Debug with Verdi

• Resolution

– Gated clock, needs a stable clk_en

– TCL, SystemVerilog etc.

– set_constant/sim_force

clk_en toggled

during prove-phase

SNUG 2019 29

DebugBus

1500+
connections

Sim: 4 weeks

FV: 2 weeks

Lane Re-ordering

Sim: 46080
minutes

FV: 60 minutes

PathDelays

Sim: Multiple
Days

FV: Half-day

Augments simulation

Shift-left with VC Formal - results

SNUG 2019 30

• Team has deployed VC Formal on an ongoing project

• Used VC Formal with apps:

– Connectivity

– FPV

• Also using FCA (Formal Coverage-unreachability Analysis)

– Saves RTL designer’s review time

• FPV usage can increase on new designs

– Fresh RTL, easier to add assertions

– Can start even before simulation

• Formal is here to stay along with simulation

It is not a destination, but a journey

Conclusions & future work

SNUG 2019 31

Balamurali N S (Manager)

Mohammed Asad Rizvi (Designer)

Omprakash L B(DV)

Subash S (DV)

Suhas Aithal P N (DV lead)

Vishwanathan Paramasivam (Director)

It is a teamwork!

Acknowledgments

SNUG 2019 32

Thank You

